A fundamental and elusive question that lies in the interface of statistical physics and materials science is: how do athermal amorphous materials transition continuously between fluid and solid states of matter. This phenomenon, coined as jamming or unjamming depending on whether the fluid \rightarrow solid, or solid \rightarrow fluid transition is considered, displays critical behavior with diverging length scales and power law behavior of macroscopic material-properties. The Jamming point has been shown to be controlled by geometric constraints imposed by the microscopic structure of the material. Such constraint are known to determine the nature of low-energy excitations in amorphous materials, and therefore control their mechanical and thermodynamic properties. In this talk I will particularly discuss the spectral properties of disordered networks of Hookean springs, and how this simple model helps us understand the mechanical responses of a variety of systems: from the elastic properties of glasses and polymer networks, to the rheology of suspension flows. I will show that the spectra of simple elastic networks can be understood in terms of two classes of geometric objects: floppy modes, which are displacements that preserve the distance between nodes, and rigid modes, which are sets of pairwise forces that balance the net force over the nodes.